PFOS and PFOA are on the EPA's Contaminant Candidate List 4 (CCL-4).

Recently, to provide Americans with a margin of protection from exposure to PFOA and PFOS, the EPA established a health advisory with levels at 70 parts per trillion.

What is the EPA’s stance?

PFOS and PFOA are on the EPA’s Contaminant Candidate List 4 (CCL-4).

Recently, to provide Americans with a margin of protection from exposure to PFOA and PFOS, the EPA established a health advisory with levels at 70 parts per trillion.

The Solution: Granular Activated Carbon (GAC)

- Calgon Carbon has provided a successful treatment solution for PFCs for more than 15 years

- FILTRASORB GAC is recognized as an effective technology for reducing perfluorinated compounds in water

- Granular activated carbon (GAC) is a hybrid mixture of a wide variety of graphite platelets that are interconnected by non-graphitic carbon bonding - the adsorptive capacity of GAC makes it ideal for removing harmful contaminants like PFOA and PFOS

- Recent Accelerated Column Tests (ACTs) of Calgon Carbon type Filtrasorb 400 and Filtrasorb 600 virgin GAC show successful removal of perfluorinated compounds, including Perfluorobutanoic Acid (PFBA), Perfluoropentanoic Acid (PFPA), Perfluorohexanoic Acid (PFHxA), Perfluoroheptanoic Acid (PFHpA), Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS), and Perfluorodecanoic Acid (PFDA)

- Incineration of any concentrated PFC waste is required for complete destruction - spent activated carbon containing adsorbed compounds can be thermally reactivated, destroying the adsorbed contaminants and allowing the activated carbon to be recycled and reused
What are PFCs?

• PFCs are manmade fully fluorinated compounds, which are not naturally found in the environment

• PFCs are used in a variety of products such as firefighting foams and coating additives as surface-active agents

• PFOS (perfluorooctane sulfonate) and PFOA (Perfluorooctanoic acid) are the most commonly produced PFCs

• Large amounts of PFCs have been produced during past manufacturing processes and released to the air, soil, and water

Why are PFCs harmful?

• PFOA and PFOS are persistent and mobile in the atmosphere and aqueous environments because of their chemical stability and low volatility

• Animal toxicology studies indicate potential developmental, reproductive, and systematic effects

• After oral exposure, PFCs accumulate and absorb in the serum, kidney, and liver

• PFCs are resistant to direct oxidation, photolyticedgradation, biodegradation, and air stripping/vapor extraction, making their removal difficult

What can Calgon Carbon do for you?

• Provide proven and cost-effective packaged solutions with activated carbon adsorption technology that cover a broad range of applications and flow rates

• Provide carbon reactivation to thermally destroy the PFCs and enable the reuse of the activated carbon; Calgon Carbon has reactivation facilities around the globe

• Perform laboratory and field tests and tailor solutions for various applications and customer needs

• Offer experienced sales, field service, and application engineering teams

• Rapidly deploy temporary and permanent GAC systems

The use of domestic reagglomerated bituminous coal-based GAC removes Perfluorinated Compounds (PFCs), but also Total Organic Compounds, Disinfection By-Products and other Carcinogenic Volatile Organic Compounds (cVOC), such as Tetrachloroethylene (PCE) and Trichloroethylene (TCE).

Calgon Carbon provides financing options in affordable monthly installments through its “Potable Water Service” program to help utilities finance GAC and GAC equipment.