VPR 4x10
Vapor Phase Reactivated Carbon

Applications
- Landfill Leachate
- Environmental Water
- VOC Industrial
- VOC Remediation
- Reactivation

- Removal of organic contaminants from industrial and remediation air streams
- Treatment of emissions during startup, shutdown, and maintenance activities
- Point source treatment to remove volatile chemicals
- Treatment of emissions from remediation processes

Description
VPR 4x10 is designed for the removal of organic contaminants from industrial and remediation air stream applications. The carbon is manufactured by the reactivation of previously used carbons to produce a high-density, high surface area, durable reactivated product. VPR 4x10 is effective in a wide range of vapor applications, providing reliable removal of volatile organic and odorous compounds.

Features / Benefits
- Selected sources of used granular activated carbon
- Reactivated product
- Recyclable product
- High surface area/pore structure
- Produces a strongly adsorbing pore structure for a broad range of contaminants and concentrations in vapor phase applications
- Economical alternative to virgin carbon in odor control
- Provides ultimate disposal of pollutants
- Eliminates landfill costs and concerns
- Propagates the cycle of responsible resource utilization
- Efficient in removing a wide range of volatile organic compounds

Specifications
- Butane Activity: 21.4 min
- Moisture (As packaged), wt%: 5 max
- < 10 US Mesh [2.00 mm] (PAN), wt%: 5 max

Typical Pressure Drop Curve VPR 4x10

Design Considerations
The design of an activated carbon adsorption system is dependent on the adsorbate type, influent concentration, temperature, flow rate, performance objective, and other factors. Calgon Carbon can help evaluate the suitability of VPR 4x10 to satisfy your specific needs and assist in the design of an adsorption system.

In addition to the supply of activated carbon, Calgon Carbon offers a complete line of standardized, pre-engineered adsorption systems for both temporary and permanent applications.