PFOS and PFOA are on the EPA’s Contaminant Candidate List 4 (CCL-4), and in May 2016, the EPA established a health advisory with levels at 70 parts per trillion.

What is the EPA’s stance?

PFOS and PFOA are on the EPA’s Contaminant Candidate List 4 (CCL-4), and in May 2016, the EPA established a health advisory with levels at 70 parts per trillion.

A solution provider with unrivaled experience

- Calgon Carbon has provided a successful treatment solution for PFAS for more than 15 years
- FILTRASORB® GAC is recognized as an effective technology for reducing perfluorinated compounds in water
- Granular activated carbon (GAC) is a hybrid mixture of a wide variety of graphite platelets that are interconnected by non-graphitic carbon bonding - the adsorptive capacity of GAC makes it ideal for removing harmful contaminants like PFOA and PFOS
- Recent Accelerated Column Tests (ACTs) of Calgon Carbon type Filtrasorb® 400 and Filtrasorb® 600 virgin GAC show successful removal of perfluorinated compounds, including Perfluorobutanoic Acid (PFBA), Perfluoropentanoic Acid (PFPA), Perfluorohexanoic Acid (PFHxA), Perfluoroheptanoic Acid (PFHtA), Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS), and Perfluorodecanoic Acid (PFDA)
- Incineration of any concentrated PFAS waste is required for complete destruction - spent activated carbon containing adsorbed compounds can be thermally reactivated, destroying the adsorbed contaminants and allow the activated carbon to be recycled and reused
- Calgon Carbon offers comprehensive treatment solutions, including technical service, activated carbon, equipment, field service, transportation and reactivation. The process of selecting a proper technology for water treatment is complicated and highly dependent upon influent quality – specifically the level of PFAS and background contaminants.
- In addition to our Filtrasorb® GAC, Calgon Carbon is a leader in providing customers with innovative treatment solutions for both drinking water and groundwater remediation using Ion Exchange technology. Independent third party testing of Calgon Carbon’s Ion Exchange Resin for PFAS removal (CalRes 2300) shows superior performance to other ion exchange resins available in the market.
The use of domestic reagglomerated bituminous coal-based GAC removes Per- and Polyfluoroalkyl Substances (PFAS), but also Total Organic Compounds (TOC), Disinfection By-Products (DBP) and other Volatile Organic Compounds (VOC), such as Tetrachloroethylene (PCE) and Trichloroethylene (TCE).

Calgon Carbon provides financing options in affordable monthly installments through its “Potable Water Service” program to help utilities finance GAC and GAC equipment.

What are **PFAS?**

- PFAS are manmade fully fluorinated compounds, which are not naturally found in the environment
- PFAS are used in a variety of products such as firefighting foams and coating additives as surface-active agents
- PFOS (perfluorooctane sulfonate) and PFOA (Perfluorooctanoic acid) are the most commonly produced PFAS
- Large amounts of PFAS have been produced during past manufacturing processes and released to the air, soil, and water

What can **Calgon Carbon do for you?**

- Provide proven and cost-effective packaged solutions with activated carbon adsorption technology that cover a broad range of applications and flow rates
- Provide carbon reactivation to thermally destroy the PFAS and enable the reuse of the activated carbon; Calgon Carbon has reactivation facilities around
- Perform laboratory and field tests and tailor solutions for various applications and customer needs
- Offer experienced sales, field service, and application engineering teams
- Rapidly deploy temporary and permanent GAC systems

Why are **PFAS harmful?**

- PFOA and PFOS are persistent and mobile in the atmosphere and aqueous environments because of their chemical stability and low volatility
- Animal toxicology studies indicate potential developmental, reproductive, and systematic effects
- After oral exposure, PFAS accumulate and absorb in the serum, kidney, and liver
- PFAS are resistant to direct oxidation, photolytic degradation, biodegradation, and air stripping/vapor extraction, making their removal difficult

PFAS are manmade fully fluorinated compounds, which are not naturally found in the environment. PFAS are used in a variety of products such as firefighting foams and coating additives as surface-active agents. PFOS (perfluorooctane sulfonate) and PFOA (Perfluorooctanoic acid) are the most commonly produced PFAS. Large amounts of PFAS have been produced during past manufacturing processes and released to the air, soil, and water. PFOA and PFOS are persistent and mobile in the atmosphere and aqueous environments because of their chemical stability and low volatility. Animal toxicology studies indicate potential developmental, reproductive, and systematic effects. After oral exposure, PFAS accumulate and absorb in the serum, kidney, and liver. PFAS are resistant to direct oxidation, photolytic degradation, biodegradation, and air stripping/vapor extraction, making their removal difficult.

The use of domestic reagglomerated bituminous coal-based GAC removes Per- and Polyfluoroalkyl Substances (PFAS), but also Total Organic Compounds (TOC), Disinfection By-Products (DBP) and other Volatile Organic Compounds (VOC), such as Tetrachloroethylene (PCE) and Trichloroethylene (TCE).

Calgon Carbon provides financing options in affordable monthly installments through its “Potable Water Service” program to help utilities finance GAC and GAC equipment.

+1 800 422 7266 calgoncarbon.com